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Abstract This article is an attempt to place mathematical thinking in the context of more
general theories of human cognition. We describe and compare four perspectives—
mathematics, mathematics education, cognitive psychology, and evolutionary psychology—
each offering a different view on mathematical thinking and learning and, in particular, on the
source of mathematical errors and on ways of dealing with them in the classroom. The four
perspectives represent four levels of explanation, and we see them not as competing but as
complementing each other. In the classroom or in research data, all four perspectives may be
observed. They may differentially account for the behavior of different students on the same
task, the same student in different stages of development, or even the same student in different
stages of working on a complex task. We first introduce each of the perspectives by reviewing
its basic ideas and research base. We then show each perspective at work, by applying it to the
analysis of typical mathematical misconceptions. Our illustrations are based on two tasks: one
from statistics (taken from the psychological research literature) and one from abstract algebra
(based on our own research).
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1 Introduction

This article is an attempt to place mathematical thinking in the context of more general
theories of human cognition. We describe and compare four perspectives, each routed in a
different research community, and each offering a different view on mathematical thinking
and learning and, in particular, on the sources of mathematical errors.

1. Mathematics: where the focus is on the rules and norms of the mathematical research
community.

2. Mathematics education: where the focus is on the individual and social processes in a
community of learners, in and out of the classroom.

3. Cognitive psychology: where the focus is on the universal characteristics of the human
mind and behavior, which are shared across individuals, cultures, and different content
areas.

4. Evolutionary psychology: where the focus is on the evolutionary origins of human
cognition and behavior and their expression in “universal human nature.”

The four perspectives represent four levels of explanation, and we see them not as
competing but as complementing each other, much as descriptions at different levels of the
same phenomena in other sciences are necessary for fuller understanding of the observed
phenomena. For example, here is a typical quote on the usefulness of multilevel view in
biological psychology.2 The “explanatory pluralism” discussed in that article seems very
relevant to the multilevel character of mathematics education.

[Theories] at different levels of description, like psychology and neuroscience, can co-
evolve, and mutually influence each other, without the higher-level theory being
replaced by, or reduced to, the lower-level one. Such ideas seem to tally with the
pluralistic character of biological explanation. In biological psychology, explanatory
pluralism would lead us to expect many local and non-reductive interactions between
biological, neurophysiological, psychological and evolutionary explanations of mind
and behavior. (Looren de Jong, 2002, p. 441)

In the classroom or in research data, all four perspectives may be observed. They may
differentially account for the behavior of different students on the same task, the same
student in different stages of development, or even the same student in different stages of
working on a complex task.

The article can also be considered as an attempt to deal with the (admittedly vague)
question, “Are mathematical errors good or bad?” (We are referring here not to accidental
errors, but to those of the universal recurring kind.) The mathematical perspective typically
views errors as bugs, something that went wrong due to faulty knowledge, and needs to be
corrected.3 The mathematics educational perspective typically views errors as partial
knowledge, still undesirable, but a necessary intermediate stage on the way towards attaining
professional norms, and a base on which new or refined knowledge can be constructed.
Cognitive psychologists4 typically view errors as an undesirable but unavoidable feature of
the human mind, analogical to optical illusions, which originate at the interface between

2 See also Nisan and Schocken (2005) for such a multilevel view of computer science.
3 This is meant to describe a typical view in the community. Some individuals or subcommunities may, of
course, hold different views.
4 We refer here mainly to the reasoning and decision-making subcommunities.
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intuitive and analytical thinking (Evans, 2008; Kahneman & Frederick, 2005; Stanovich &
West, 2000). Evolutionary psychologists, in contrast, view errors as stemming from useful
and adaptive features of human cognition (Barkow, Cosmides & Tooby, 1992; Buss, 2005;
Cosmides & Tooby, 1996; Gigerenzer, & Todd, the ABC research group, 1999). In this view,
mistakes are not really errors but, rather, the expression of an intelligent system that had been
adapted by natural selection to Stone-Age ecology, and now has been “tricked” by
unexpected conditions of modern civilization or in the psychologist’s lab. According to this
perspective, people make mistakes (at least of the universal recurring kind) not because of
deficiencies in their intelligence or their knowledge but because the requirements of modern
mathematics, logic, or statistics clash with their “natural” intelligence. In addition, by the very
nature of an intelligent system, it must calculate and make inferences beyond the information
given; hence, it must, to a certain extent, be prone to errors in the face of atypical conditions.
Hence, the opening quotation, “I think, therefore I err.” (Gigerenzer, 2005, p. 1).

The main part of the article consists of the application of the four perspectives to two
mathematical tasks, one from statistics (taken from the psychological research literature)
and one from abstract algebra (taken from our own research). The two tasks, introduced in
Section 2, are known to elicit high rates of errors even among students in top universities.
In Section 3, we introduce each of the perspectives by reviewing its basic ideas and
research base. In Sections 4 and 5, we put the four perspectives to work by applying them
to the analysis of the two tasks and the errors they engender.

2 The two tasks

The following two tasks will be used later in the paper to illustrate how each of the four
perspectives can be used to explain students’ misconceptions. The tasks were selected for
the prevalence and magnitude of the misconceptions they engender.

2.1 Statistical thinking: “Are humans good intuitive statisticians after all?”5

Many “biases” concerning statistical thinking are discussed in the psychological research
literature. One of the most famous is the “medical diagnosis problem” and the related
phenomenon of “base-rate neglect.” Here is a standard formulation of the task and data,
taken from Samuels, Stitch and Tremoulet (1999):

Casscells, Schoenberger, and Grayboys (1978) presented [the following problem] to a
group of faculty, staff and fourth-year students at Harvard Medical School.

If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of
5%,6 what is the chance that a person found to have a positive result actually has
the disease, assuming that you know nothing about the person's symptoms or
signs? ___%

Under the most plausible interpretation of the problem, the correct Bayesian answer is
2%. But only eighteen percent of the Harvard audience gave an answer close to 2%.
Forty-five percent of this distinguished group completely ignored the base-rate
information and said that the answer was 95%. (p. 79–80)

5 The quote is from Cosmides and Tooby (1996), p. 2.
6 This means that 5% of the people who test positive do not have the disease.
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This task is intended to test what is usually called Bayesian thinking: how people update
their initial statistical estimates (the base rate) in the face of new evidence. In this case, the
initial estimate (the prevalence of the disease in the general population) is 1/1,000, the new
evidence is that the patient has tested positive (together with the 5% false-positive rate), and
the task is intended to uncover how the subjects will update their estimate of the chance that
the patient actually has the disease. Base-rate neglect reflects the widespread fallacy of
ignoring the base rate, instead simply subtracting the false-positive rate (5%) from 100%.

A formal solution to the task is based on Bayes’ theorem, but there are many
complications and controversies surrounding the interpretation and application of that
theorem.7 This is a deep and fascinating issue involving mathematics, psychology, and
philosophy, which is beyond the scope of this paper. See Cosmides and Tooby (1996) and
Barbey and Sloman (2007) for extensive discussion.

Interestingly, it is possible to arrive at the Bayesian solution intuitively without using the
formal Bayes’ theorem: Assume that the population consists of 1,000 people and that all
have taken the test. We know that one person will have the disease (because of the base
rate) and will test positive (because no false-negative rate has been indicated). In addition,
5% of the remaining healthy 999 people (approximately 50) will test false-positive—a total
of 51 positive results. Thus, the probability that a person that tests positive actually has the
disease is 1/51, which is a little less than 2%.

We digress for a classroom-oriented comment. Confronting people who gave the 95%
answer with the correct mathematical solution is not, in our view, a satisfactory way to deal
with the conflict between their primary intuition and the mathematical solution (in either its
intuitive or formal versions). In our experience, students will reluctantly accept the
analytical solution but will remain confused and unhappy. This is because, we submit, they
still hold in their mind the two solutions: one immediate and intuitive but now declared
illegitimate; the other mathematically respectable but clashing with the intuitive one. And
we as mathematics educators have not really done much to help them alleviate the tension
between the two incompatible entities that simultaneously inhabit their mind.

A good way of helping students deal with this clash is to look at some variations of the
original problem, in particular extreme cases. For example, assume there is a country where
the disease has been totally eliminated (that is, its base rate is zero). Now if you ask your
students what is the probability that someone from that country who tested positive actually
has the disease, they will likely say, “you must be kidding, you just told us that no one has
the illness, so of course the probability is zero”—no base-rate neglect here! But now
assume that the disease in that country is almost totally eliminated, say only 1 out of 1,000
inhabitants has it, would you not expect that the answer to the same question would be, "the
probability is nearly zero"? Similarly, we might consider the same question in an
unfortunate country where everybody has the disease. In general, we could imagine a

7 Here is Cosmides and Tooby’s (1996, p. 4) explanation:

In science, what everyone really wants to know is the probability of a hypothesis given data—p(H|D).
That is, given these observations, how likely is this theory to be true? This is known as an inverse
probability or a posterior probability. The strong appeal of Bayes' theorem arises from the fact that it
allows one to calculate this probability:

p H Djð Þ ¼ p Hð Þp D Hjð Þ=p Dð Þ, where p Dð Þ ¼ p Hð Þp D Hjð Þ þ p ~Hð Þp D ~Hjð Þ.

Bayes’ theorem also has another advantage: it lets one calculate the probability of a single event, for
example, the probability that a particular person, Mrs. X, has breast cancer, given that she has tested
positive for it.
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computer microworld (or even let the student develop one) that models this problem, with a
slider that assigns variable base rates and demonstrates the resulting probabilities.

2.2 Mathematical reasoning: “Students’ use and misuse of Lagrange’s theorem”8

The data are drawn from the performance of university students on a group theory task. We
first lay out the necessary mathematical background.

The entire task takes place within the group Z6, consisting of the set {0,1,2,3,4,5} and
the operation of addition modulo 6, denoted by +6. For example, 2þ6 3 ¼ 5, 3þ6 3 ¼ 0,
3þ6 4 ¼ 1, and, in general, a+6b is defined as the remainder of the usual sum a+b on
division by 6. Z6 is a group in the sense that it contains 0 and is closed under addition mod
6: if a and b are in Z6, then so is a+6b.

9 Similarly, we define Z3 to be the group consisting
of the set {0,1,2} and the operation +3 of addition modulo 3. A subgroup of Z6 is a subset
of {0,1,2,3,4,5}, which is, in itself, a group under the operation defined in Z6. For example,
it can be checked that the subset {0,2,4} is a subgroup of Z6, since it contains 0 and is
closed under +6.

All the groups in this discussion are finite, in the sense that they have a finite number of
elements; this number is called the order of the group. Thus, the order of Z6 is 6 and the order
of Z3 is 3. Finally, an important theorem of group theory, called Lagrange’s theorem, states
that if H is a subgroup of G, then the order of H divides the order of G; for example, if H is a
subgroup of Z6, then the order H divides 6. Thus, the order of H cannot be 4 or 5 but 3 is
possible, and indeed, we have seen above an example of a subgroup of Z6 with three
elements. For what follows, it is relevant to mention that the converse of Lagrange’s theorem
is not true in general. For example, it is possible to give an example of a group G of order 12
that does not contain a subgroup of order 6 (see, e.g., Gallian, 1990, example 13, p. 151).

2.3 The task and data (Hazzan & Leron, 1996)

The following task was given to 113 computer science majors in a leading Israeli university,
who had previously completed courses in calculus and in linear algebra (an abstract
approach), and were now in the midst of an abstract algebra course:

A student wrote in an exam, “Z3 is a subgroup of Z6.”
In your opinion, is this statement true, partially true, or false?
Please explain your answer.

An incorrect answer was given by 73 students, 20 of whom invoked Lagrange’s
theorem, in essentially the following manner:

Z3 is a subgroup of Z6 by Lagrange’s theorem, because 3 divides 6.

Mathematical remark 1 The correct answer is that Z3 is not a subgroup of Z6. The reason is
that Z3 is not closed under the operation +6 (for example, 2þ6 2 ¼ 4, and 4 is not in Z3).
The question is tricky because Z3 is a sub-set of Z6 and is a group (relative to +3), but it is
not a sub-group of Z6 (since it is not a group relative to +6).

10 There is a sophisticated sense

8 Adapted from Hazzan and Leron (1996).
9 In the present context, these conditions are equivalent to the standard definition of a group.
10 The elements of the groups Zn are often taken to be equivalence classes, not numbers as in our definition,
which would lead to a different mathematical analysis of the task. The present analysis, however, is the one
relevant for the version that our students have learned.
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in which the statement “Z3 is a subgroup of Z6” is partially true, namely, that Z3 is
isomorphic to the subgroup {0, 2, 4} of Z6. We would, of course, have been thrilled to
receive this answer, but none of our 113 students gave it.

Mathematical remark 2 As can be seen from the previous remark, the correct solution does
not use Lagrange’s theorem. It is relevant to mention that, in spite of superficial
resemblance, there is no way Lagrange’s theorem could even help on this task, since “H
is a subgroup” is the hypothesis of Lagrange’s theorem, not its conclusion. What the
students seem to be using is an incorrect version of a nontheorem (namely, the converse of
Lagrange’s theorem).11

3 Reviewing the four perspectives

We now introduce each of the four perspectives outlined in the introduction. Obviously, not
all members of the relevant communities hold the same views, and sometimes, not even
similar views. What we are portraying is what we believe is a typical view held in the
relevant community, or at least in a significant subcommunity. Where possible, we support
our profiles with appropriate references to the literature.

Since the first two perspectives (mathematics and mathematics education) are well
known to readers of this journal, we dwell on them only briefly, as a basis for comparison
with the other perspectives (cognitive and evolutionary psychology), which are introduced
and discussed more thoroughly.

3.1 A mathematical perspective: errors as bugs

This perspective looks at mismatches between students’ work and the norms of the
professional mathematician. The source of students’ errors is typically assumed to be their
faulty mathematical knowledge, and the way to address them contains teaching suggestions,
such as explaining a difficult point, giving more examples or exercises, etc.

3.2 A mathematics education perspective: errors as expressing intermediate state
in knowledge construction

In the mathematics education literature, especially in research on misconceptions,
knowledge is typically viewed as being actively constructed by the learner, rather than
being transmitted from teacher to student. The process of knowledge construction may be
lengthy, and in the intermediate stages, the learner will have partial knowledge, which may
result in errors. However, these errors are viewed as a normal and acceptable part of the
learning process rather than expressing faulty performance. Moreover, errors are valued as
offering a window into the learner’s states of mind in the process of learning. Thus,
researchers document recurring errors and develop theoretical interpretations to account for
the process that yields these errors (e.g., Davis, Maher, & Noddings, 1990).

11 Hazzan and Leron (1996) discuss data on two more tasks, which show that this misuse of Lagrange’s
theorem is deeper and more prevalent than might appear merely from the data presented here.
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3.3 A cognitive psychology perspective: errors as a clash between two systems of thinking

Here, we will mainly discuss the dual-process theory (introduced below) and the heuristics-
and-biases research program in cognitive psychology (led by Kahneman & Tversky over
the last 30 years; cf., e.g., Evans 2003, 2008; Gilovich, Griffin, & Kahneman, 2002;
Kahneman, 2002; Stanovich & West, 2000, 2003).

Dual-process theory The ancient distinction between intuitive and analytical modes of
thinking has achieved a new level of specificity and rigor in what cognitive psychologists
call dual-process theory. The first application of this theory to mathematics education
research, to the best of our knowledge, appears in Leron and Hazzan (2006); the present
exposition and analysis is an abridged version of the one given in that paper.

According to dual-process theory, our cognition and behavior operate in parallel in two
quite different modes, called System 1 (S1) and System 2 (S2), roughly corresponding to our
commonsense notions of intuitive and analytical modes of thinking. These modes operate in
different ways, are activated by different parts of the brain, and have different evolutionary
history (S2 being evolutionarily more recent and, in fact, largely reflecting cultural
evolution). The distinction between perception and cognition is ancient and well known,
but the introduction of S1, which sits midway between perception and (analytical)
cognition, is relatively new and has important consequences for how empirical findings in
cognitive psychology are interpreted, including the wide-ranging rationality debate
(Samuels et al., 1999; Stanovich & West, 2000, 2003; Stein, 1996), and the application
to mathematics education research.

Like perception, S1 processes are characterized as being fast, automatic, effortless,
unconscious and inflexible (hard to change or overcome); unlike perceptions, S1 processes
can be language-mediated and relate to events not in the here-and-now. S2 processes are
slow, conscious, effortful, computationally expensive (drawing heavily on working memory
resources), and relatively flexible. The two systems differ mainly on the dimension of
accessibility: how fast and how easily things come to mind. In most situations, S1 and S2
work in concert to produce adaptive responses, but in some cases (such as the ones
concocted in the Heuristics-and-biases and in the reasoning research), S1 generates quick
automatic nonnormative responses, while S2 may or may not intervene in its role as
monitor and critic to correct or override S1’s response.

Many of the nonnormative answers people give in psychological experiments—and in
mathematics education tasks, for that matter—can be explained by the quick and automatic
responses of S1, and the frequent failure of S2 to intervene in its role as critic of S1.

Here is a striking example (Kahneman, 2002) for a combined failure of both systems:

A baseball bat and ball cost together one dollar and 10 cents. The bat costs one dollar
more than the ball. How much does the ball cost?

Almost everyone reports an initial tendency to answer ‘10 cents’ because the sum
$1.10 separates naturally into $1 and 10 cents, and 10 cents is about the right
magnitude. […] many intelligent people yield to this immediate impulse: 50% (47/93)
of Princeton students, and 56% (164/293) of students at the University of Michigan
gave the wrong answer. (p. 451)

According to dual process theory, the fast-reacting S1 “hijacks” the subject’s attention
and jumps automatically and immediately with the answer of 10 cents, since the numbers
one dollar and 10 cents are salient, and since the orders of magnitude are roughly
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appropriate. For many people, S1’s conclusions are accepted uncritically; thus, in a sense,
they “behave irrationally.” For others, S1 had also immediately jumped with this answer,
but in the next stage, their S2 interfered critically and made the necessary adjustments to
give the correct answer (5 cents). Significantly, the way S1 worked here, namely, coming
up with a very quick decision based on salient features of the problem and of rough sense of
what is appropriate in the given situation, usually gives good results under natural
conditions, such as searching for food or avoiding predators.

Researchers in cognitive psychology do not usually consider educational implications of
their research, so we offer instead our own thoughts on the implications of dual-process
theory. Because many of the misconceptions come from combined failure of both S1 and
S2, we propose that the most important educational implication is the need to train people
to be aware of the way S1 and S2 operate, and to include this awareness in their problem-
solving toolbox. This suggestion has an interesting (almost paradoxical) recursive nature: It
in effect implies that S2 should monitor not only the operation of S1 (its standard role), but
the S1-S2 interaction as well; thus, S2 has to monitor its own functioning in monitoring S1.
In a way, we might say that an operation of a “System 3” is needed here (to monitor S2),
but in practice, this function is recursively assumed by S2 itself.12 While monitoring and
critiquing S1 is one of the reasons S2 has evolved in the first place, monitoring the S1-S2
interaction seems to be what Geary (2002; see next section) has called biologically
secondary skills, one which will not normally develop without explicit instruction.

When cognitive psychologists do mention education, it may sound a bit naïve to
practitioners in the educational field:

The characteristics that determine analytic system intervention, other than cognitive
ability, are dispositional. People may choose to engage in effortful analytic thinking
because they are inclined to do so by strong deductive reasoning instructions […] or,
perhaps, because they have personal motivation.

[…]

This dispositional aspect of the analytic system also provides encouragement to those
who believe that our educational systems can and should encourage people to think in
a more “rational,” abstract, and decontextualized manner[…]. (Evans, 2006, p. 383)

While this advice is backed up by empirical data from the psychologist’s lab,
experienced mathematics educators facing the realities of the mathematics classroom
usually prefer to deal with misconceptions through appropriate activities and discussions
rather than instructions.

3.4 An evolutionary psychology perspective: errors as a clash between human nature
and modern civilization

We take from the young discipline of evolutionary psychology (EP) the scientific view of
human nature as a collection of universal, reliably developing, cognitive and behavioral
abilities—such as walking on two feet, face recognition, and the use of language—that are
spontaneously acquired and effortlessly used by all people under normal development
(Cosmides & Tooby, 1992, 1997; Pinker, 1997, 2002; Ridley, 2003; Tooby & Cosmides,
2005). We also take from EP the evolutionary origins of human nature; hence, the frequent

12 See Stanovich (2008) for a recent attempt to formulate a tri-process theory.
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mismatch between the ancient ecology to which it is adapted and the demands of modern
civilization. We all do manage, however, to learn many modern skills (such as writing or
driving, or some mathematics) because of our mind’s plasticity and its ability to “co-opt”
ancient cognitive mechanisms for new purposes (Bjorklund & Pellegrini, 2002; Geary,
2002). However, this is easier for some skills than for others, and nowhere are these
differences more manifested than in the learning of mathematics. The ease of learning in
such cases is determined by the accessibility of the co-opted cognitive mechanisms rather
than the complexity of the task.

We emphasize that what is part of human nature need not be innate: we are not born
walking or talking. What seem to be innate are the motivation and the ability to engage the
species-typical physical and social environment in such a way that the required skill will
develop (Geary, 2002). This is the ubiquitous mechanism that Ridley (2003) has called
“nature via nurture.” We also emphasize that what is not part of human nature, or even what
goes against human nature, need not be unlearnable. Individuals in all cultures have always
accomplished prodigious feats such as juggling 10 balls while riding a bicycle, playing a
Beethoven piano sonata, or proving an abstract mathematical theorem in a formal language.
However, research on people’s reasoning, and on mathematical thinking in particular,
usually deals with what most people are able to accomplish under normal conditions. Under
such conditions, many people will produce nonnormative answers if the task requires
reasoning that goes against human nature. In terms of mathematical education, this means
that learning successfully such skills will require a particularly high level of motivation and
perseverance—conditions that are hard to achieve for a long time and for many people in
the standard classroom. Finally, it is in order to note here that EP is a hotly debated
discipline. Much of the criticism leveled at EP is ideologically or emotionally motivated,
but see, e.g., Stanovich and West (2003) and Evans (2003) for a sample of scientifically
respectable alternative views.

We take Geary (2002) as an example of the EP community’s effort to create a discipline
of “evolutionary educational psychology.” Geary (2002) distinguishes between biologically
primary skills, which emerge spontaneously and naturally in all people under normal
development, i.e., they are part of human nature as conceived by evolutionary
psychologists, and biologically secondary skills, which require more effort and more
motivation to learn, usually within teaching-oriented situations.

The principles of evolutionary educational psychology will provide a much needed
anchor for guiding instructional research and practice. An evolutionarily informed
science of academic development is in fact the only perspective that readily
accommodates basic observations that elude explanation by other theoretical
perspectives, such as constructivism […]

For instance, it follows logically from the principles of evolutionary educational
psychology that children will learn language easily and without formal instruction,
and years later many of these children will have difficulty learning to read and write
even with formal instruction. (p. 340)

Recently, the EP framework has been applied to explain a curious phenomenon
concerning functions (Paz & Leron, 2008), which may offer some insight into the
relationship between mathematical thinking and human nature. Paz & Leron study this
relationship in the case of what they call the action-on-objects scheme (AOS: the Piagetian
notion that when you act on an object it changes its properties, but still remains the same
object) and the function concept. Based on their empirical findings, they propose that the
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same parts of human nature (the AOS in this case) that may initially support the learning of
a mathematical concept (functions in this case) can later clash with more advanced versions
of that same concept. This offers an intriguing view of the (cultural) evolution of
mathematical concepts, as being initially anchored in human nature, but then developing in
ways that clash with the very intuitive foundations that gave rise to them in the first place.

We conclude this concise review of EP with a word about the relation of human nature
to dual-process theory (Section 3.3). Human nature consists, by definition, of a more-or-less
fixed collection of traits and behaviors that all human beings in all cultures acquire
spontaneously and automatically under normal developmental conditions. System 1, in our
view, contains all the traits and behaviors that comprise human nature but, on top of that,
also all the traits and behaviors that have become S1 for a particular culture or a particular
person because of specific (nonuniversal) developmental conditions. For example, learning
language is part of human nature and, thus, part of S1 for all human beings under normal
developmental conditions; in contrast, speaking English is not part of human nature but is
an S1 skill for people whose mother tongue is English. Similarly, driving a car is not part of
human nature but has become an S1 skill for experienced drivers, as evidenced by their
ability to hold an intellectual conversation (an S2 task, fully engaging the working memory
resources) while driving.

An interesting corollary of an EP perspective is that the persistent errors of the kind
discussed here stem not from weakness of the human cognitive system but from its
strength. Indeed, human nature is a collection of all the skills people are naturally good at,
and the errors stem from the clash between the requirements of modern society with these
mechanisms that are adapted to the ecology of our Stone-Age ancestors.

4 Putting the four perspectives to work: statistical thinking

We now apply the four perspectives for the analysis of the medical diagnosis problem and
the data presented in Section 2.1. As noted before, the two familiar perspectives
(mathematics and mathematics education) will be only mentioned briefly, as a basis for
comparison with the two relatively novel perspectives (cognitive and EP).

A mathematical point of view would point to an error in statistical thinking: students neglect
to take into account the base rate, or, alternatively, fail to correctly apply Bayes’ theorem.

Since we did not find in the mathematics education literature an analysis of the medical
diagnosis problem, we will make up a possible interpretation with the hope of capturing
some of the spirit of that community (or one of its subcommunities). One interpretation (in
the spirit of Nesher & Teubal, 1975, or Leron & Hazzan, 1997) is that people do not look
deeply into the problem but, instead, do some routine calculations based on verbal cues. For
example, because of the meaning of “5% false positive,” they may classify this problem as
a “subtraction problem,” and just do the subtraction 100%−5%, which leads to the
observed base-rate neglect. Another interpretation is that people actually do take into
account some base rate, but not necessarily the tiny one (0.001) postulated in the problem.
In our experience, some people tend to personalize the problem (“if I tested positive…”),
bringing in a whole baggage of realistic conditions that are abstracted away in the original
formulation. For example, they would not normally take the test if they did not have an a
priori serious worry that they might have the disease, that is, if they did not assume a very
high base rate. In this case, a positive test would indeed mean a high probability of having
the disease. Of course one could devise empirical tests to decide between these
interpretations (Barby & Sloman, 2007).
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We now proceed to analyze the medical diagnosis problem from a cognitive psychology
perspective, more specifically, from a dual-process theory perspective. An initial analysis
may look rather similar to the bat-and-ball analysis in Section 3.3. S1 quickly and
effortlessly generates the 95% response because of its accessibility (subtracting the 5%
error rate from 100%), and, because of the automatic, intuitive interpretation of “false
positive,” the base rate of 1/1,000 is completely ignored. As in the bat-and-ball analysis,
too, “the dormant S2” failed to catch the error in its role as critic and monitor of S1’s
output. The difference between the two problems lies in the complexity of what S2 is
required to notice and correct: adjusting the difference between the costs of the bat and ball
in the former vs attending to the multiple nested-set relationships in the latter (the network
of subsets among the whole population, the people who have the disease, the ones who
were tested and the ones who tested positive). Thus, for S2 to notice and correct S1’s
response needs only a simple alert in the first case but a much greater effort and skill in the
second, which may account for the difference in the percentage of correct responses.

More specifically, according to Evans (2006), in order to solve the medical diagnosis
problem correctly, subjects must integrate all the information in a single mental model, and
this is facilitated in formulations that make the nested-set structure salient (including, e.g.,
the frequentist formulation explained next).13

It appears that heuristic processes cannot lead to correct integration of diagnostic and
base rate information, and so Bayesian problems can only be solved analytically. This
being the case, problem formats that cue construction of a single mental model that
integrates the information in the form of nested sets appears to be critical. (p. 391)

Researchers with evolutionary and ecological orientation (Cosmides & Tooby, 1996;
Gigerenzer, & Todd, the ABC research group, 1999) claim that people are “good
statisticians after all” if only the input and output are given in “natural frequencies”
(integers instead of fractions or percentages).

In this article, we will explore what we will call the “frequentist hypothesis”—the
hypothesis that some of our inductive reasoning mechanisms do embody aspects of a
calculus of probability, but they are designed to take frequency information as input
and produce frequencies as output. (Cosmides & Tooby, 1996, p. 3)

The EP explanation is that the brains of our hunter–gatherers ancestors developed such a
module because it was vital for survival and reproduction and because this is the format that
people would naturally use under those conditions. The statistical formats of today,
however, are the result of the huge amount of information that is collected, processed, and
shared by modern societies with modern technologies. To demonstrate a typical EP
theorizing, it is worth quoting at some length from Cosmides and Tooby (1996):

In our natural environment, the only database available from which one could
inductively reason was one's own observations, and possibly those communicated by
the handful of other individuals one lived with. More critically, the “probability” of a
single event is intrinsically unobservable.

No sense organ can discern that if we go to the north canyon, there is a .25 probability
that today’s hunt will be successful. Either it will or it won’t; that is all one can

13 In the following quotation, Evans uses heuristic processes instead of Stanovich & Kahneman's System 1
and analytic processes instead of System 2.

Intuitive vs analytical thinking: four perspectives 273



observe. As useful as a sense organ for detecting single-event probabilities might be, it
is theoretically impossible to build one. No organism can evolve cognitive
mechanisms designed to reason about, or receive as input, information in a format
that did not regularly exist.

What was available in the environment in which we evolved was the encountered
frequencies of actual events—for example, that we were successful 5 out of the last 20
times we hunted in the north canyon. Our hominid ancestors were immersed in a rich
flow of observable frequencies that could be used to improve decision-making, given
procedures that could take advantage of them. So if we have adaptations for inductive
reasoning, they should take frequency information as input.

Once frequency information has been picked up, why not convert it into a single-
event probability? Why not store the encountered frequency—“5 out of the last 20
hunts in the north canyon were successful”—as a single-event probability—“there is a
.25 chance that a hunt in the north canyon will be successful”? There are advantages
to storing and operating on frequentist representations because they preserve
important information that would be lost by conversion to a single-event probability.
(pp. 15–17)

Because of such considerations, EP researchers have sometimes been accused of telling
“just-so stories.” However, this accusation is misconceived. As usual in EP methodology,
such evolutionary theorizing is not taken as evidence but only as a theoretical framework
for generating and explaining hypotheses. The test of the hypotheses is done under the
standard psychological methodologies. Indeed, Cosmides and Tooby (1996) have replicated
the experiment of Casscells et al. (1978), but with natural frequencies replacing the original
fractional formats, and the base-rate neglect has all but disappeared:

Although the original, non-frequentist version of Casscells et al.’s medical diagnosis
problem elicited the correct bayesian answer of "2%" from only 12% of subjects
tested, pure frequentist versions of the same problem elicited very high levels of
bayesian performance: an average of 76% correct for purely verbal frequentist
problems and 92% correct for a problem that requires subjects to construct a concrete,
visual frequentist representation. (ibid, p. 58)

These data, and the evolutionary claims accompanying them, have been consequently
challenged by other researchers (see Samuels et al., 1999; Evans, 2008). In particular,
Evans (2008) claims that what makes the subjects in these experiments achieve such a high
success rate is not the frequency format per se, but that “there is now much evidence that
what facilitates Bayesian reasoning is a problem structure that cues explicit mental models
of nested-set relationships” (p. 6.13). However, the fresh perspective offered by EP has
been seminal in reinvigorating the discussion of statistical thinking in particular, and of
cognitive biases in general. The very idea of the frequentist hypothesis, and the exciting and
fertile experiments that it has engendered by supporters and opponents alike, would not
have been possible without the novel evolutionary framework. Here is how Samuels et al.
(1999) summarize the debate:

But despite the polemical fireworks, there is actually a fair amount of agreement
between the evolutionary psychologists and their critics. Both sides agree that people
do have mental mechanisms which can do a good job at bayesian reasoning, and that
presenting problems in a way that makes frequency information salient can play an
important role in activating these mechanisms. (p. 101)
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5 Putting the four perspectives to work: mathematical reasoning

We now apply the four perspectives for the analysis of students’ use and misuse of
Lagrange’s theorem and the data presented in Section 2.2.

A mathematical analysis of the students’ errors in the above application of Lagrange’s
theorem would include, for example: Students do not understand how to use the theorem,
fail to check the initial conditions, or confuse between the theorem and its converse. From
the mathematical education perspective, Hazzan and Leron (1996) and Leron and Hazzan
(1997) give detailed analyses of the Lagrange’s theorem data, both from a “misconcep-
tions” perspective, and—using the novel tool of virtual monologue—from a “coping”
perspective.

From the cognitive psychology perspective, Leron and Hazzan (2006), applying dual-
process theory, proposed that some cases of students’ misuse of Lagrange’s theorem reflect
a combined S1-S2 failure. The analysis closely resembles Kahneman’s analysis of the bat-
and-ball data, except for the somewhat surprising demonstration that S1 can “hijack”
cognitive behavior even in advanced mathematical settings, where the name of the game is
explicitly reasoning and analytical thinking (i.e., S2 mode).

As usual, the S1 response is invoked by what is most immediately accessible to the
students in the situation, which also looks roughly appropriate to the task at hand.
Specifically, the students know that using a theorem in such situations is expected; they also
know more-or-less immediately and effortlessly that Lagrange’s theorem says something
about groups and subgroups and the divisibility of their orders (it is the details and logic of
what the theorem says that requires the effortful and pedantic intervention of S2); finally,
the appearance of the two numbers 3 and 6 as orders of the groups Z3 and Z6, and the fact
that 3 divides 6, immediately and automatically cues Lagrange’s theorem, yielding the
answer, “Z3 is a subgroup of Z6 by Lagrange’s theorem, because 3 divides 6.” This is a
striking example for an answer that looks entirely appropriate by the “logic” of S1, but is
extremely inappropriate by the logic of S2.

In addition to S1’s inappropriate reaction, S2 too fails in its role as critic of S1, since
there is nothing in the task situation to alert the monitoring function of S2. The missing
judgment—mainly that Lagrange’s theorem cannot be used to establish the existence of a
subgroup but only its absence—clearly requires S2 processes. It is important to note that
some of the students may well have the knowledge required to produce the right answer,
had they only stopped to think more (that is, invoke S2). The problem is, rather, that they
have no reason to suspect that the answer is wrong; thus, the “permissive System 2”
(Kahneman, 2002) remains dormant:

[An] evaluation of the heuristic attribute comes immediately to mind, and […] its
associative relationship with the target attribute is sufficiently close to pass the
monitoring of a permissive System 2. (p. 469)

Just as in the bat-and-ball situation, the final (erroneous) response in this case is a
combination of S1’s quick and effortless reaction, together with S2’s failure to take a
corrective action in its role as critic and monitor. Since the operation of S1 is effortless and
that of S2 so effortful, students will not make the extra effort unless something in the
situation alerts them to such need. It is a feasible (and eminently researchable) hypothesis
that, at least for some of the students, a small nonmathematical cue would be enough to set
them on the path for a correct answer. They may already have all the necessary (S2)
knowledge to solve this problem correctly, but a nudge by the interviewer (even just raising
an eyebrow or looking doubtful) is needed to mobilize this knowledge. This shows,
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incidentally, that the dual-system framework leads not only to new explanations but also
(like all good theories) to interesting new research questions.

We now turn to look at students’ misuse of Lagrange's theorem from an evolutionary
psychology perspective by referring to the logic of social exchange. Cosmides and Tooby
(1992, 1997) have used the Wason card selection task (Wason & Johnson-Laird, 1972) to
uncover what they refer to as people’s evolved reasoning “algorithms.” In a typical example
of the Wason task, subjects are shown four cards, say A , 6 , T, and 3 , and are told that
each card has a letter on one side and a number on the other. The subjects are then
presented with the rule, “if a card has a vowel on one side, then it has an even number on
the other side,” and are asked the following question: What card(s) do you need to turn over
to see if any of them violate this rule? The notorious result is that roughly 90% of the
subjects, including science majors in college, give an incorrect answer. Many similar
experiments have been carried out, using rules of the same logical form “if P then Q,” but
varying the content of P and Q. The error rate has varied depending on the particular
context, but mostly remained high (over 50%).

The motivation behind the original Wason experiment was partly to see if people
naturally behave in accordance with the Popperian paradigm that science advances through
refutation of held beliefs (rather than their confirmation). The normative response to the
Wason task depends on the question: What will refute the given rule? The answer is that the
rule is violated if and only if a card has a vowel on one side but an odd number on the other.
Thus, according to mathematical logic, the cards you need to turn are A (to see if it has an
odd number on the other side) and 3 (to see if it has a vowel on the other side). Most
subjects, however, choose the A card and sometimes also 6 , but rarely 3.

Cosmides and Tooby (1992, 1997) have also presented their subjects with many versions
of the task, all having the usual logical form “if P then Q,” but varying widely in the contents
of P and Q and in the background story. While the classical results of the Wason task show
that most people perform poorly on it, Cosmides & Tooby demonstrated that their subjects
performed significantly better on tasks involving conditions of social exchange. In social
exchange situations, the individual receives some benefit and is expected to pay some cost.
On theoretical grounds, and from what is known about the evolution of cooperation, certain
kinds of social skills are expected to have conferred evolutionary advantages on those who
excelled in them and, thus, would be naturally selected during evolutionary history. In the
Wason task, social exchange situations are represented by statements of the form “if you get
the benefit, then you pay the cost” (e.g., if you give me your watch, then I give you $20). A
cheater is someone who takes the benefit but do not pay the cost. Cosmides & Tooby argue
that when the Wason task concerns social exchange, a correct answer amounts to detecting
a cheater. Since subjects performed correctly and effortlessly in such situations, and since
evolutionary theory clearly shows that cooperation cannot evolve in a community if
cheaters are not detected and punished, Cosmides & Tooby have concluded that our mind
contains evolved “cheater detection algorithms.”

Significantly for the Lagrange’s theorem task discussed here, Cosmides & Tooby also
tested their subjects on the “switched social contract” (mathematically, the converse
statement “if Q then P”), in which the correct answer by the logic of social exchange is
different from that of mathematical logic (Cosmides & Tooby, 1992, pp. 187–193). As
predicted, their subjects overwhelmingly chose the former over the latter: When conflict
arises, the logic of social exchange overrides mathematical logic. In other words, in a
social exchange situation, people will mostly interpret the Wason task statement in a
symmetrical way, as if it were an “if and only if” statement, rather than a directional way as
required by mathematical logic.
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This EP theoretical and empirical framework adds a new level of support, prediction and
explanation to the many findings that students are prone to confusing between mathematical
propositions and their converse and, in particular, to our Lagrange’s theorem data.
Importantly, in the EP view, people fail not because of a weakness in their cognitive
apparatus, but because of its strength: our impressive skill in negotiating social relation-
ships. Unfortunately for mathematics education, this otherwise adaptive skill sometimes
happens to clash with the requirements of modern mathematical thinking.

6 Conclusion

In this article, we have proposed to view mathematical thinking in the wider context of
human cognition in general, specifically, focusing on situations of conflict between intuitive
and analytical thinking. We have surveyed research from cognitive psychology and EP that
bears on two questions of interest to mathematics education theory and practice: How is
mathematical thinking enabled by our general cognitive system, and, on the other hand,
why is mathematical thinking so difficult for so many people? More specifically, we have
discussed four perspectives on the sources of recurring mathematical errors and on how to
deal with them in the classroom. We believe that looking at these questions from several
perspectives—complementary rather than competing—may enrich our understanding and
offer new insights and new research directions. As for teaching and curriculum planning,
these perspectives give additional weight to the importance of teaching as much as possible
in ways that are consonant with intuition (more specifically, with “human nature” in its
evolutionary psychological sense), and the challenge of finding ways to bridge the gap
where formal mathematics clashes with this intuition. Finally, the cognitive and
evolutionary perspectives shed a new light (Leron, 2003) on the question "Is mathematical
thinking a natural extension of common sense?"
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