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A generic proof is, roughly, a proof carried out on a generic
example. We introduce the term generic proving to denote
any mathematical or educational activity surrounding a
generic proof. The notions of generic example, generic
proof, and proof by generic example have been discussed 
by a number of scholars (e.g., Balacheff, 1988; Mason 
& Pimm, 1984; Rowland, 1998; Malek & Movshovitz-
Hadar, 2011). All acknowledge the role of proof not only in
terms of validating the conclusion of a theorem but, just as
importantly, as a means to gain insights to why the theorem
is true. In particular, we support and extend the argument
made by Rowland (1998) that a generic proof does carry a
substantial “proof power”, and may in fact lie on the same
continuum as the working mathematician’s proof. In the
same vein, we analyze possible ways that generic proof and
proving may help in unpacking and making accessible to
students at all levels the main ideas of a proof [1].

The article is organized as a reflection on three examples,
or “mathematical case studies”, which reveal increasingly
more subtle facets of generic proving. The first mathemati-
cal case study is a simple and elementary theorem of
numbers (also discussed in Rowland, 1998). The second
example, a decomposition theorem on permutations, is still
elementary in the sense of not requiring subject-matter
knowledge beyond high school mathematics, but is more
sophisticated in terms of the proof techniques required. The
third example, Lagrange’s theorem from elementary group
theory, is more sophisticated both in terms of the proof tech-
niques and the subject matter knowledge required. All the
examples are introduced in a self-contained manner and all
the terminology is explained and exemplified.

In the second part of the article, we reflect in more depth
on the mathematical case studies of the first part, in an
attempt to explicate some of the general features of generic
proofs. For example, in an attempt to characterize the math-
ematical content of generic proofs, we look for
commonalities with professional mathematicians’ proofs as
they appear in research journals and in university-level text-
books and lectures. For another example, we ask—and try to
give some partial answers—about the scope of generic prov-
ing: what kind of proofs can be more or less helpfully
approached via a generic version?

The article has been written in the form of a thought
experiment. It is, however, solidly based in the experience of
the authors in running many workshops with students and
in international conferences on exactly these examples and
ideas. Several researchers have previously discussed the
more theoretical aspects of generic proofs. This research,

while relevant to the topic at hand, would take us away from
our mathematical and pedagogical focus [2].

Mathematical case study 1: counting the fac-
tors of a perfect square
Theorem: A natural number which is a perfect square 
(i.e., the square of another natural number) has an odd num-
ber of factors.

For example, the number 16 (= 42) has 5 factors (namely:
1, 2, 4, 8, 16), and 25 (= 52) has 3 factors (namely: 1, 5, 25).
Generic Proof: Let us look at the perfect square 
36 (= 62). We want to show that it has an odd number of 
factors. We list systematically all the factorizations of 36 as
a product of two factors: 

1 × 36
2 × 18
3 × 12
4 ×  9
6 ×  6

All the factors of 36 appear in this list. (We could go on listing
9 × 4, 12 × 3, etc., but because multiplication is commuta-
tive, this would just repeat the previous factorizations and
would not produce new factors.) Counting the factors, we see
that the factors appearing in all the products, except the last,
come in pairs and are all different, thus totaling to an even
number. Since the last product, 6 × 6, contributes only one
factor to the count, we get, in total, an odd number of factors.
Specifically, we have 2 × 4 + 1 = 9 factors. 

From this first simple example we can already get an ini-
tial idea of what a generic proof is, and of some of its
strengths and weaknesses. Obviously, our generic proof is
not a complete proof, since the theorem has only been
proved for the particular number 36. However, the number
36 was treated as generic in the sense that we did not make
use of any of its specific properties except that it is a per-
fect square. In fact, all the important ideas of the general
proof already appear in this generic proof, with the result
that students could easily reproduce the proof for any other
example. Indeed, they would most likely feel that they were
carrying out the same proof. Thus, a generic proof serves as
an easy introduction to the proof’s main ideas. 

Note the choice of 36 as our generic example. We felt
that 36 could represent for the learner any perfect square,
while 4, 16, 25 or even 169 (= 132) would have been too 
special to highlight the generalizability of the proof (e.g.,
they would have too few factorizations). In Rowland’s
(1998) words, it is “small enough to be accessible with 
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mental arithmetic but with sufficient factors to be non-
trivial” (p. 68). In Mason and Pimm’s (1984) terms, it allows
us “to see the general in the particular” (p. 277).

We partly concur with Movshovitz-Hadar’s (1988) sug-
gestion that a generic example should be “large enough to be
considered a non-specific representative of the general case,
yet small enough to serve as a concrete example” (p. 17). In
general, however, “size” should be replaced by a measure
of the complexity of the example. In the case considered
here, complexity is measured by the number of factors, not
the magnitude of the number; thus, 169 is less generic than
36, since the former is too special, having only 3 factors. In
general, the example chosen should be “complex enough” to
ensure that all the main ideas of the target proof will natu-
rally surface in the context of the example.

Mathematical case study 2: decomposing a
permutation into cycles 

Theorem: Every permutation has a unique decomposition
as a product of disjoint cycles. (These terms will be
explained as the proof unfolds.) 

In order to highlight both the mathematical and educa-
tional aspects of generic proving, we will present the
theorem and its proof via a thought experiment of an ideal-
ized virtual classroom scenario [3]. In their previous lesson,
the students in our scenario have already learned and prac-
ticed the definition of a permutation (a one-to-one mapping
of the set {1, 2, … , n} onto itself) [4], and the 2-row nota-
tion for permutations [5]. They have also learned when two
permutations are equal (when they are equal as functions),
and the definition of multiplication for permutations (i.e.,
perform the two mappings in succession, the same as com-
position of functions).

1. Teacher: Let’s look at an example of a permutation,
say the permutation below, and see if we can find
anything interesting about its structure—how it can
be constructed from simpler permutations (simi-
larly to how numbers are constructed from their
prime factors).

For example, let’s start at 1, and follow its path as
we apply the permutation over and over again,
thus: : 1 6 …

[The students work in teams, continuing what the
teacher has started: : 1 6 3 2 1]

2. Alpha: It came back to 1! There is no point going
on, since it will just repeat the same numbers.

3. Teacher: Right. This part of the permutation is
called a cycle, and is written (1 6 3 2). It is a special
kind of permutation, in which each letter in the
cycle notation goes to the next one on the right,
except the last one, which goes back to the first.
(The letters that don’t appear in this notation are
understood to be mapped to themselves; for exam-
ple, in this cycle, 5 5.) Note that the same cycle

can also be written as (6 3 2 1), (3 2 1 6) or 
(2 1 6 3), since they are all equal as functions.

Let’s see if we can find more cycles in our permu-
tation. The letters 1, 2, 3 have already been used up,
but 4 has not, so let’s repeat the same game start-
ing with 4.

[The students work in their teams to find the path of
starting at 4.]

4. Beta: 4 goes to itself; we cannot construct a cycle.

5. Teacher: Since we see that 4 4, we write this as
(4) and call this a trivial cycle. It is equal to the
identity function, sending every letter to itself.
What do we do next?

6. Students: Construct the cycle starting at 5 (the next
unused letter). 

[The students construct the path 5 7 5 and the
corresponding cycle (5 7).]

7. Students: Now all the numbers 1, 2, 3, 4, 5, 6, 7
have been used up—we can’t construct any more
cycles.

8. Teacher: Right. We can’t and we needn’t; we have
now found all the cycles of our permutation. In fact,
if we recall the definition of permutation product,
we can see that our original permutation is actually
equal to the product of the cycles we have found!

How do we know this? Take 1, for example. You
can see that on both sides 1 goes to 6, and simi-
larly for all other letters. (This is no coincidence:
it’s how we constructed the cycles.) Hence the per-
mutations on the two sides are equal as functions.
Notice that no number appears in two (or more)
cycles on the right-hand side. The cycles are there-
fore said to be disjoint. 

9. Gamma: Just a minute, if is a product of cycles,
we must also take the other cycles into account
when we calculate (1) from this product.

10. Delta: Yes, but because the cycles are disjoint, 1
and 6 don’t appear in any other cycle, which means
that we can ignore them when calculating (1). 

11. Teacher: Right. We can summarize our work so far
by saying that the permutation has been decom-
posed as a product of disjoint cycles. 

You can also check that, unlike multiplication of
permutations in general, the multiplication of 
disjoint cycles is commutative.

12. Epsilon: Can we always do this? Can we decom-
pose any permutation as a product of disjoint
cycles?

!
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13. Teacher (to the class): Well, what do you think?

14. Epsilon: Why shouldn’t we just repeat the same
process for any permutation?

15. Alpha: Wait a minute! What if this procedure didn’t
work? We were lucky that 2 went back to 1 in the
first cycle, but what if it didn’t? What if it went
back to 6 for example? Then we wouldn’t have a
cycle.

16. Teacher: If we had 2 going to 6, and earlier we also
had 1 going to 6, then we would have both (1) =
6 and (2) = 6. Is this possible?

17. Beta: No, this is impossible, because a permutation
is a one-to-one function so we can’t have 

(1) = (2).

18. Teacher: That’s correct, therefore our procedure
will always yield cycles. For the same reason, we
can’t have the same letter appearing in two differ-
ent cycles, because this too would violate the
one-to-one property of the permutation [6]. This
guarantees that our procedure will generate disjoint
cycles. 

19. Teacher (summarizes): We have jointly constructed
a generic proof of the theorem: Every permutation
can be decomposed as a product of disjoint cycles.

20. Teacher (moving on): As an optional homework
exercise you can try to formalize and generalize
this generic proof to show that the conclusion holds
for any permutation [7].

[The teacher and students proceed to establish the
uniqueness of the decomposition, but we shall skip
this part because of space limitations.]

Now we can state our full theorem: Every permu-
tation has a unique decomposition as a product of
disjoint cycles.

Note again the choice of generic example for the cycle
decomposition theorem: a permutation on 7 letters, having
cycles of lengths 1, 2 and 4. A shorter permutation on 6 let-
ters would have been possible, with cycle lengths of 1, 2 and
3, but this orderly sequence looked to us a bit too special and
possibly misleading. Thus, again, we have chosen the sim-
plest example that would still be complex enough to
represent the general case.

This mathematical case study also demonstrates a subtle
pitfall that lurks behind generic proofs. In the example, some
phenomena just happen, automatically, but would require a
proof in the general case. Thus, the cycles just happened to
close back on the initial letter, and they also just happened to
be disjoint. The fact that this phenomenon just happened in
the example might conceal the need for proof in the general
case, thus bypassing some of the important ideas of the 
general proof. In fact, this is the only place where we are
using the crucial property of permutations as a one-to-one
function. In our idealized Lakatosian dialogue, the bright

students have brought up this issue themselves, but under
more realistic conditions it is more likely that the teacher
would have to raise this point.

Mathematical case study 3: Lagrange’s theo-
rem
Before we move on with a generic proof, we bring a brief
mathematical introduction of Lagrange’s theorem. We do this
not by presenting a crash course in group theory, but by lim-
iting our explanations to the context of the examples used.
In effect we are preceding the generic proof of Lagrange’s
theorem by a generic introduction to the elements of group
theory used in the proof.

The entire discussion of the generic proof occurs within
the group Z12, consisting of the set {0, 1, 2, …, 11} and the
operation of addition modulo 12, denoted by +12. For exam-
ple, 2 +12 3 = 5, 5 +12 7 = 0, 5 +12 8 = 1, and, in general, 
a +12 b is defined to be the remainder of the usual sum a + b
on division by 12. Z12 is a group in the sense that it contains
0 and is closed under addition modulo 12, i.e., if a and b are
in Z12, then so is a +12 b [8]. Furthermore, Z12 is a finite group
since it contains a finite number of elements. 

A subgroup of Z12 is a subset of {0, 1, 2, …, 11} which is
in itself a group under the operation defined in Z12. For exam-
ple, it can be checked that the subset H = {0, 3, 6, 9} is a
subgroup of Z12, since it contains 0 and is closed under +12.
(For example, 6 +12 9 = 3, which is again a member of H.) 

The order of a finite group G is the number of its elements,
and is denoted o(G). Thus, o(Z12) = 12 and o(H) = 4. We note
that 4 divides 12. As it turns out, this is not a coincidence, and
is in fact an example of the following theorem, which is prob-
ably the most important theorem in elementary group theory.

Lagrange’s theorem: If H is a subgroup of a finite group G,
then the order H divides the order of G.
A generic proof of Lagrange’s theorem: We will carry out
the proof of the theorem for the group G = Z12 and the sub-
group H = {0, 3, 6, 9}. It may seem odd to prove that o(H)
divides o(G) for this case, for obviously no proof is neces-
sary for the fact that 4 divides 12. However, while we
already know that o(H) divides o(G) in our example, we do
not know why this is so, and to this end we do need the
generic proof. The generic proof will demonstrate the gen-
eral process which serves to carry out the proof in general.

The main idea of the proof is that by creating “shifts” of
H, we obtain a partition of G into disjoint subsets having
the same cardinality as H, from which we can calculate o(G)
from o(H). Specifically, given an element g in G, we define
the coset of g and H in G as the following subset of G:

H +12 g = {h +12 g : h in H}

We calculate the cosets of H in G in our example.

H +12 0 = {0 +12 0, 3 +12 0, 6 +12 0, 9 +12 0} = {0, 3, 6, 9},
(i.e., H itself).

Similarly:
H +12 1 = {1, 4, 7, 10} 

H +12 2 = {2, 5, 8, 11}

H +12 3 = …
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We leave it for the reader (or for the class in the Lakatosian
scenario) to show that from now on we are not getting new
cosets but are only repeating the old ones. 

The number of distinct cosets of any subgroup H of a
finite group G is called the index of H in G, and is denoted
iG(H). In our example, where G = Z12, we have iG(H) = 3.

We can see that all the cosets have the same number of ele-
ments as H (4 in our example), and that each element in G
appears in one and only one of the cosets of H in G. Since G
is now presented as the disjoint union of the different cosets
of H in G, we can conclude that the order of G is the number
of distinct cosets of H in G times the order of H, namely: 

o(Z12) = o(H) × iG(H)

which is an even a stronger statement than what we had to
prove.

As in the permutation decomposition theorem, the virtual
class would have noticed that some of the relations that in
the example “just happened”, would require a proof that they
should always happen in the general case. This includes the
facts that all cosets have the same number of elements (the
order of H), and that distinct cosets are disjoint. In fact, as
in the permutations example, proving these “lemmas” is
where we actually use the group and subgroup definitions. 

The main contribution of this mathematical case study to
the general discussion of generic proving is the slippery
nature of the question, “What is a good generic example in
the context of a generic proof?” Indeed, the group Z12, being
a cyclic group (generated by a single element), is the sim-
plest kind of group imaginable, and thus definitely not a
generic example of a finite group. If someone asked you for
an example of a “typical” finite group, you would definitely
not think of giving them this example. Still it does a fair job
of exemplifying the main ideas of the proof of Lagrange’s
theorem. Moreover, choosing a more “generic” example of a
group (say, the so-called symmetric group S3 with 6 elements
or S4 with 24 elements), would have made the generic proof
computationally much more complicated, and what we
might have gained in generality would have been lost in sim-
plicity and learnability. Thus, a delicate balance between
generality and simplicity is needed in making this didacti-
cal choice. When the mathematical objects making up the
proof are simple (numbers, permutations, Eulerian circuits
in graphs), then the balance leans towards the generality of
the generic example. When the objects become more com-
plicated and abstract (groups, subgroups, cosets), the
balance leans towards simplicity rather than generality. 

Finally, this mathematical case study also highlights the
fact that the test of genericity should be applied not to the
example itself (Z12 is not a good generic example of a
group), but rather to the proving process that this example
generates: the process of partitioning G by its cosets, and the
properties of this partition, are quite general, though the
group to which we are applying this process is not.

Reflections on scope and method
Reflecting and generalizing from the above examples brings
up some important mathematical and educational issues
regarding generic proofs. We list these issues as questions
with tentative partial answers. 

What are the strengths of generic proofs?
In learning proofs, one can distinguish two different types of
activities: understanding a proof (presented by a book or
teacher) and creating a proof (given the theorem). Generic
examples can substantially help teachers and students in the
pursuit of both goals. 

First, generic proofs can help understanding by enabling
students to engage with the main ideas of the complete proof
in an intuitive and familiar context, temporarily suspending
the formidable issues of full generality, formalism and sym-
bolism. While a complete formal proof may be beyond the
reach of almost all school children (e.g., Healy & Hoyles,
2000; Stylianides, 2007), we could imagine a classroom
activity whereby even elementary school children learn the
generic proof of the perfect square theorem (our mathemat-
ical case study 1), and produce their own versions for other
examples. Indeed, they would most likely feel that they were
carrying out the same proof. 

In more complicated proofs, such as our permutations
example, it is possible to build up the complexity gradually,
via a chain of successively more elaborate partial generic
proofs, each highlighting finer points of the proof that were
not salient in previous steps. Thus, while the complete for-
mal proof may be beyond reach for most high school
students, they can still get a good view of the main ideas
via a generic proof. Even for college-level students, preced-
ing the complete proof by a generic version may help in
highlighting the main ideas of the proof, separating them
from the technicalities of formalism and notation.  

Through the process of generic proving, teachers can help
students move beyond empirical proof schemes (Harel &
Sowder, 1998, 2007) and raise their need for proof
(Zaslavsky et al., 2012). Finally, generic proving can help
students create the complete proof by serving as a graded
sequence of hints in a guided discovery process. This aspect
will be discussed more fully below. 

What are the weaknesses of generic proofs?
The main weakness of a generic proof is, obviously, that it
does not really prove the theorem. The “fussiness” of the
full, formal, deductive proof is necessary to ensure that the
theorem’s conclusion infallibly follows from its premises. In
fact, some of the more subtle points of a proof are prone to
be glossed over in the context of the generic proof: some
steps which “just happen” in the example, may require a spe-
cial argument in the complete proof to explain why they
happen, and to ensure that they will always happen. In the
generic proof of the cycle decomposition theorem, for exam-
ple, we have seen that cycles just “turn out” to close back
to their first element, and that cycles just “turn out” to be dis-
joint. In fact, if we had not been careful, we could have
completed the generic proof without ever utilizing the cru-
cial one-to-one property of permutations. Since these
essential issues do not naturally come up in the course of
generic proving, the teacher’s initiative here is crucial. Sim-
ilarly, in the generic proof of Lagrange’s theorem, students
who see that all cosets have the same number of elements,
may not notice that this fact requires proof and, in fact,
depends crucially on the group definition.
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We can capture this important difference by saying that in
the generic proof some facts are simply observed, whereas
in the complete proof they have to be derived. Thus, the fact
that all cosets have the same number of elements (or even,
for that matter, Lagrange’s theorem itself) is simply
observed in the case of our example, but must be derived
in the general proof. This issue presents a challenge to any-
one who teaches with generic proofs: the teacher needs to
motivate the students to learn these additional parts of the
proof, which may appear unnecessary in the context of the
example [9].

When we have presented a class with a generic proof,
what have students learned? What have we proved?
First, as we have pointed out before, students have learned
how to carry out the proof on any example, not just the
one we demonstrated. They have also learned (at the level
of the example) the main ideas of the proof. But what have
we actually proved? What is the mathematical status of a
generic proof? We know that a proof carried out on an
example does not count as proof, but does this mean that
we have actually proved nothing? Well, it must be admit-
ted that at the formal level we have indeed proved
nothing: no mathematical journal would accept for publi-
cation a generic proof of a new theorem (though even
mathematical journals and textbooks occasionally indulge
in isolated generic proofs for some propositions; see the
example two paragraphs below). Still, the feeling persists
that we did go a long way towards presenting the complete
proof. How can we capture more explicitly the source of
this feeling? 

We could start with an observation: given a good generic
proof, any professional mathematician (say, a specialist in
the relevant topic area) could easily generalize and formal-
ize it into a full formal proof. If asked about the difficulty
of the task, she would likely describe this as a “technical
exercise” (or even “trivial exercise”): it could require quite a
bit of technical work, but hardly any additional insight, dis-
covery or creativity. (The fact that this “technical exercise”
might be beyond the mathematical powers of most under-
graduate mathematics majors is not relevant to the present
theoretical discussion.)

We bring one example to support this observation. In his
undergraduate textbook, Abstract Algebra, Herstein (1986)
introduces the cycle decomposition theorem via a generic
example (paralleling lines 1 – 11 in our virtual classroom
scenario), concluding with the following remark:

There is nothing special about the permutation [in our
example] that made the argument we gave go through.
The same argument would hold for any permutation
[…]. We leave the formal writing down of the proof to
the reader. (Herstein, 1986, pp. 132-133)

Remarkably, writing down the complete proof appears as
Exercise 4 on p. 136, under the subheading “easier prob-
lems” (the other categories are “middle-level” and “harder”
problems). This reference does not establish that writing
down the complete proof (given a generic proof) is an easy
exercise for most undergraduate students—in our experience

it is not; it does support our claim that a professional math-
ematician would view this as just a technical exercise.

One way to clarify the status of a generic proof is to re-
conceptualize it as a recipe for the learner on how to
construct the complete proof (a kind of closely-guided dis-
covery learning). We could once again imagine a classroom
thought experiment, presenting the following step-wise
teaching activity. The teacher (T) asks a student (S) to prove
the cycle-decomposition theorem. S tries for a while and
asks for help. T: ok, I’ll give you a hint. T shows S how the
proof is carried out on an example, something like lines 1 –
11 in our classroom scenario, and once again asks S to try
to prove the theorem. If she still can’t complete the proof, T
gives her a few more hints (like the subsequent steps in our
classroom scenario), until she says: now I have all the ingre-
dients for constructing the full proof. (Let us assume for
simplicity that she does have the technical expertise to deal
with the formalization itself.)

On the face of it, this generic proving activity seems good
only for didactical purposes and is not related to real proofs
as conceived by working mathematicians, but actually there
may be a stronger connection than first meets the eye. The
reason is that even the working mathematician’s proofs, as
they appear in research journals, are far from being full for-
mal proofs, and you might well ask (just as for generic
proofs), what have they actually proved. The answer is not
simple, but we could approximate it by saying that the work-
ing mathematician’s proof is still a recipe for how to write
the “ideal” complete proof. The unofficial implicit rules of
mathematical discourse require only that you explicate the
details of the proof to the extent that it can convince another
expert in your field that given enough time and motivation,
your sketch could be fleshed out into a full “ideal” proof. 

Several mathematicians have expressed closely related
views on the nature of a “working mathematician’s proof”.
Here are two examples:

Proving a claim is, for a mathematician, an act of pro-
ducing, for an audience of peer experts, an argument
to convince them that a proof of the claim exists. […]
The convinced listener feels empowered by the argu-
ment, given sufficient time, resources, and incentive, to
actually construct a formal proof. (Hyman Bass, per-
sonal communication [10])

To be sure, in practice no one actually bothers to write
out such formal proofs. In practice, a proof is a sketch,
in sufficient detail to make possible a routine transla-
tion of this sketch into formal proof. (Mac Lane, 1986,
p. 377)

In view of the above quotations, since both the professional
mathematician and the students do not write a complete
formal proof, but only a recipe that convinces someone
else that writing such a proof would be “merely a techni-
cal exercise” (or, in Mac Lane’s words above, “a routine
translation”), it is possible to view the difference between
a generic proof and a mathematician’s proof as a matter of
degree rather than kind.
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Not all proofs are equally amenable to a  genuine generic
version. Can we characterize the proofs (or parts
thereof) that are so amenable?
This fascinating and difficult question raises a host of math-
ematical and educational issues. An answer would likely
involve the form and structure of the proof (a mathematical
aspect), but the effectiveness of a generic version is
expressed in terms of its ability to render the main ideas of
the general proof accessible to a particular audience (an edu-
cational aspect).

One observation that stands out of the mathematical case
studies is that if a proof involves an act of construction (of
a mathematical object or process), then this construction can
be effectively presented via a generic example. Thus, we
have shown how to construct all factorizations of the given
number in our first mathematical case study, a cycle decom-
position in our second mathematical case study, and a
partition of the group into its cosets in the third. Signifi-
cantly, whether a proof does or does not involve an act of
construction may depend on how we choose to formulate the
proof. Often an act of construction in a proof is hidden by
the linear mathematical formalism, but may be revealed by
“structuring” the proof (Leron, 1983, 1985a), whence a
generic version of the proof may become accessible.  

Some proofs may not seem on the surface to be amenable
to a generic version because of their structure or logical
form, or the nature of the mathematical objects involved; for
example, proof by contradiction or proofs involving infinite
objects. But even in such cases, we can often isolate some
constructive element that can be presented via a generic
example. We mention three such examples. 

1. Euclid’s proof of the infinitude of prime numbers.
The basic construction here (given any finite set of
primes, construct a new prime not in the set) can be
presented via a generic example. In fact, Euclid
himself does this in his Elements, Book IX, Propo-
sition 20 (Reid & Knipping, 2010, p. 135; see also
Leron, 1985b). Reid and Knipping point out that
Euclid had no choice but to base his proof on a
generic example, since he lacked the notation to
discuss any number. 

2. Cantor’s proof that the real numbers are uncount-
able, where given any list of real numbers, a new
real number is constructed by the diagonal method.
The diagonal method itself (given a rectangular table
of numbers, construct a row different from all the
rows in the table) can be first introduced via small
finite generic examples and then gradually extended
to the infinite case (e.g., Leron & Moran, 1983). 

3. Lagrange’s theorem on finite groups: the order of
a subgroup divides the order of the group. Since
this theorem concerns a relation on the collection of
all finite groups, it might be hard to see at first
glance how it could be helped by a generic exam-
ple. But since the proof involves a construction (a
partition of the group into cosets) it is possible to
devise classroom activities that demonstrate the
main ideas of the proof on a generic example as

we show in our third mathematical case study.

In contrast to these examples, we may consider the Heine-
Borel theorem from analysis: 

4. A subset of Rn is compact if and only if it is closed
and bounded. The mathematical concept of com-
pact (or closed or bounded) space can of course be
exemplified, but since the theorem and its proof
deal with complex logical relations between infi-
nite collections of infinite objects, it is hard to
imagine how it could be effectively demonstrated
through an example.

Conclusion
At the core of this article is the method of generic proving:
accessing a complicated proof by a chain of intermediate
steps, where each step highlights some of the ideas of the
proof by performing them on a generic example, and where
details, refinements and complications are gradually added
as we progress along the chain. Ideally, this should enable
the learner to reach even a complicated and “unnatural”
proof via a sequence of relatively easy and natural steps.

We conclude with a few possible directions for further
theoretical and empirical study. 

• Elaborate on methods of using generic proofs in
actual classrooms, both for understanding and for
generating proofs, and test their efficacy empiri-
cally.

• Study the work of college students to investigate
the hypothesis that preceding a complex formal
proof by a generic version would enhance their
understanding of the main ideas behind the proof. 

• Interview professional mathematicians to investi-
gate the role of generic proofs in their research and
teaching.

• Interview professional mathematicians to investi-
gate the hypothesis that proofs are stored in their
long-term memory in the form of generic exam-
ples. On theoretical grounds, two supporting
arguments can be given for this hypothesis. First,
this is simply a more economical way to store such
proofs in memory: one only memorizes the main
ideas, leaving out the technical details which can be
readily reconstructed (by an expert) when needed.
Second, this is an efficient way of storing past
experiences so that one may recognize similar
problem-solving situations in the future and re-use
the same methods [11].

Notes
[1] A comprehensive discussion of research on proofs in mathematics edu-
cation, including generic proofs, is beyond the scope of this article. The
reader is referred to the excellent recent book by Reid and Knipping (2010)
for such a survey.
[2] Readers are referred, for example, to Balacheff’s (1988) distinctions
between pragmatic vs. conceptual proofs, and between generic example
vs. thought experiment and to Herbst’s (2004) discussion of students’ inter-
action with drawings and diagrams in geometrical proofs, and the teacher’s
role in supporting this interaction.
[3] In adopting this format we have obviously been influenced by the imag-
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inary classroom schenario in Lakatos’s (1976) seminal Proofs and Refuta-
tions, as well as the dialog with “the ideal mathematician” in Davis and
Hersh (1981). As in Lakatos (1976), the scenario is taking place in an ideal-
ized class of bright and highly motivated students. A realistic class is a noisy
situation (pun intended) and we prefer to describe our ideas first in a sim-
plified and idealized setting. A realistic scenario would be much lengthier
and meandering, with lots of false starts and dead ends and, most signifi-
cantly, with the teacher having to shoulder a larger portion of the classroom
discussion, rather than eliciting most of the insights from the students.
[4] The numbers on which the permutation operates could be any n symbols
and are therefore referred to as letters.
[5] In this graphical representation of the permutation, the numbers in the
bottom row are the images of the corresponding numbers in the top row.
Thus, for the permutation defined next, (1) = 6, (2) = 1, (3) = 2, etc.
[6] A little trick is needed here, in fact a masked application of mathemati-
cal induction: assume on the contrary that there is a letter that appears in
two different cycles, and take the first such occurrence. Then the letters
appearing immediately before these two occurrences must be different,
which cannot happen in a one-to-one function.
[7] For one such proof see Gallian (1990, p. 88).
[8] The general definition of a group includes more requirements, namely
associativity and the existence of inverses. However, we do not need to
worry about these here because, in general, associativity for addition mod n
can be shown to be “inherited” from the associativity of the usual addition
of integers, and the existence of inverses can be shown, in the finite case,
to follow from the other group properties.
[9] This is similar to the teacher’s problem when proving a theorem in
geometry, which appears obvious from the accompanying figure or from
dynamic geometry activities.
[10] From a draft manuscript by Bass for a book in preparation under the
editorship of Peter Casazza, Steven G. Krarb and Randi D. Ruden cur-
rently entitled “I, Mathematician.”
[11] This last argument sits well with Minsky’s K-theory (1985, Chapter 8),
according to which the most efficient way for people to store their memo-
ries for future problem solving is at middle-level abstraction: not too
concrete but also not too abstract. It also sits well with Rosch et al.’s (1976)
theory of basic level categories: “[Categories] within taxonomies of con-
crete objects are structured such that there is generally one level of
abstraction at which the most basic category cuts can be made. In general,
the basic level of abstraction in a taxonomy is the level at which categories
carry the most information, possess the highest cue validity, and are, thus,
the most differentiated from one another” (p. 383).
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and the two aspects of story […]: the fabula and the sjuzet, the timeless and the sequenced.
Which is constrained, and in what ways? […]
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a story must “be” to be a story. And the one that strikes me as most serviceable is the one with
which we began: narrative deals with the vicissitudes of intention.
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